
CS390 – UNIX Programming Spring 2009 Page 1

 Richard Johnson 2/27/09

Lecture #13 – AWK Part I (Chapter 6)

 Background

AWK is a pattern-scanning and processing language.
Named after authors (Alfred Aho, Peter Weinberger, Brian Kernighan).
Design to be powerful string processing utility that is easy to use
Slower than some alternatives like compiled languages

Note: Solaris has 2 versions awk & nawk (nawk is the “new” awk)
Note: gawk is the GNU version of awk

 Processing Description

An awk program is a text file that consists of one or more statements of the form:

pattern { action }

The pattern selects lines from the input file, and awk performs the action on all lines that
match the pattern.

Processing of an input file is as follows:

1. awk compares the first line in the input file with each pattern in the program file

2. If a pattern selects the line, then awk takes the action associated with the pattern.

3. If there are several patterns that match a line, they are executed in the order they

reside in the program.

4. When awk has completed comparisons and actions for the first input line, it repeats
the process for the next input line.

 Command line args

awk [-Fc] –f program file [file-list]
awk program [file-list]

-f program-file causes awk to read its program from the given file
-Fc causes “c” to become the field separator (normally whites pace)

Examples:

awk ‘/^#/ { print $1 }’ input_file
awk –F: -f passwd.awk /etc/passwd
ls –ls | awk –f richj.awk

CS390 – UNIX Programming Spring 2009 Page 2

 Richard Johnson 2/27/09

 Patterns

Can be a regular expression enclosed in forward slashes (i.e. /richj/)
~ operator tests to see if a field or variable matches a regular expression ($1 ~ /richj/)
! operator tests for no match (! /richj/)
Can use relational operators (<, <=, ==, !=, >=, >)
Combine expressions with OR (||) and AND (&&)

There are 2 special patterns BEGIN and END.

Examples:

Print 1st field for all lines that start with capital letter
/^[A-Z]/ { print $1 }

before processing input, initialize some variables
BEGIN { sum = 0; first = “yes” }

print a summary after processing input
END { print “The sum is “, sum }

 Actions

The default action is { printf }
If there are several actions, they can be separated by semicolons “;”

 Comments

Comments are anything on a line following a pound sign (#)

 Variables

User variables are declared on use. (DO NOT reference with $var)

Special Variables:

NR record number of current record
$0 entire current input line
NF number of fields in current record
$1 - $n Fields in the current record
FS input field separator
OFS output field separator
RS input record separator (usually newline)
ORS output record separator (usually newline)
FILENAME name of the current input file

CS390 – UNIX Programming Spring 2009 Page 3

 Richard Johnson 2/27/09

Examples:

 # Print each line from the input file (i.e. similar to cat)
 $ awk ‘{print $0}’ employees
 $ awk ‘{print}’ employees

 # Print each line from the input file with its line number
 $ awk ‘{ print NR, $0 }’ infile

 # Print each line from the input file with the number of fields on the line
 $ awk ‘{ print $0, NF }’ infile

 # Change filed separator to colon
 $ awk –F: ‘/Tom Jones/ { print $1, $2 }’ infile
 $ awk ‘BEGIN {FS=”:”} /Tom Jones/ { print $1, $2 }’ infile

 Matching the entire line

Standalone regular expressions as patterns match against the entire input line.

Print all lines that start with Mary (i.e. similar to grep)
$ awk ‘/^Mary/’ infile

$ awk ‘/^[A-Z][a-z]+ /’ infile

 The match operator

The match operator (~) is used to match an expression within a record or field.

Print all lines where the 1st field is Bill or bill
$ awk ‘$1 ~ /[Bb]ill/’ employees

Print all lines where the 1st field does not end with “ly”
$ awk ‘$1 !~ /ly$/’ employees

 Awk commands in a script file

$ cat info

/Tom/ { print “Tom’s birthday is “, $3 }
/Mary/ { print NR, $0 }
/^Sally/ { print “Hi Sally.” }

$ awk –F: -f info infile2

CS390 – UNIX Programming Spring 2009 Page 4

 Richard Johnson 2/27/09

 Comparisons in patterns

Print all lines where the 3rd field is 5346
$ awk ‘$3 == 5346’ infile

Print the 1st field from each line where the 3rd field is bigger than 5000
$ awk ‘$3 > 5000 { print $1 }’ infile

 Computation in patterns

Print all lines where the 3rd field multiplied by the 4th field is bigger than 500
$ awk ‘$3 * $4 > 500’ filename

 Logical operators in patterns

Print all lines where the 2nd field is between 5 and 15
$ awk ‘$2 >= 5 && $2 <= 15’ filename

Print all line where the 3rd field is 100 or the 4th field is bigger than 50
$ awk ‘$3 == 100 || $4 > 50’ filename

Example of logical not
$ awk ‘! ($2 < 100 && $3 < 20)’ filename

 BEGIN and END patterns

$ cat summary

 BEGIN {
 yearsum = 0; costsum = 0
 newcostsum = 0; newcount = 0
 }

 { yearsum += $3; costsum += $5 }

 $3 > 90 { newcostsum += $5; newcount++ }

 END {
 printf “Average age of cars is %3.1f years\n”, \
 90 – (yearsum / NR)

 printf “average cost of newer cars is $%7.2f\n”, \
 newcostsum / newcount
 }

CS390 – UNIX Programming Spring 2009 Page 5

 Richard Johnson 2/27/09

 $ cat find_uid find max UID + 1

 BEGIN {
 FS = “:”
 saveit = 0
 }

 $3 > saveit { saveit = $3 }

 END { print “Next available UID is “ saveit + 1 }

 $ cat manuf uses associate arrays

 { manuf[$1] ++ }

 END { for (name in manuf) print name, manuf[name] }

