
CS390 – UNIX Programming Spring 2009 Page 1

 Richard Johnson 4/11/09

Lecture #20 – TCL

 Background

TCL (tickle) [Tool Command Language] is a scripting lang (similar to C-shell or Perl)
TK (tee-kay) is a user interface toolkit (i.e. scripting language for GUI interfaces)
Expect is a scripting language extension to TCL / Tk for automating interactive apps

Publicly, and freely available but not standard part of UNIX
Written by John Ousterhout.

Official source code is at ftp://ftp.scriptics.com/pub/tcl

TCL is really two things – a language and a library
As a language, TCL is primarily intended to help issue commands to interactive prog
As a library, TCL is intended to be embedded in other applications

TCL is very extensible (i.e. you can write new commands for TCL)

 General

High-level script language like many of the others we have seen this term
Interpreted (although it’s possible to compile)
Extensible (through C or TCL)
FREE

Each line has a “command” followed by “arguments” for all of its syntax
This leads to some interesting syntax…

Span lines with backslash (\) or {}

The main TCL interpreter is “tclsh” which can be used in batch mode or interactive mode
To use in a script, change your “#!” line to point to the location of “tclsh”
To use interactive mode, type “tclsh” at the prompt

The main Tk interpreter is called “wish” (i.e. wish hello.tcl)
Tk is a superset of TCL (i.e. all of TCL works here + Tk)

The main Expect interpreters are “expect” and “expecttk”
Expect is a superset of TCL while expecttk is a superset of both TCL and Tk

CS390 – UNIX Programming Spring 2009 Page 2

 Richard Johnson 4/11/09

 Variables

Assignment is done with “set” and they are used with “$”

Example:

 set foo “Rich”
 puts “Hello my name is $foo”

Example:

 set month 3
 set day 25
 set year 2001
 set date “$month:$day:$year”
 puts $date

 Output: 3:25:2001

Example:

 set foo “puts hi”
 eval $foo

 Expr

Most expressions in TCL are evaluated with expr

Example:

 expr 0 == 1 (result: 0 or false)
 expr 1 == 1 (result: 1 or true)
 expr 4 + 5 (result: 9)

 Command substitution

Cmd substitution is done with square brackets (i.e. [])

Example:

 set height 6.0
 puts “If I was an inch taller, I would be [expr $height + 1.0 / 12.0] feet tall”

CS390 – UNIX Programming Spring 2009 Page 3

 Richard Johnson 4/11/09

 Control flow

If statement example:

set my_planet "earth"
if {$my_planet == "earth"} {
 puts "I feel right at home."
} elseif {$my_planet == "venus"} {
 puts "This is not my home."
} else {
 puts "I am neither from Earth, nor from Venus."
}

set temp 95
if {$temp < 80} {
 puts "It's a little chilly."
} else {
 puts "Warm enough for me."
}

Output:

 I feel right at home.
 Warm enough for me.

Switch statement example:

 set num_legs 4

switch $num_legs {
 2 {puts "It could be a human."}
 4 {puts "It could be a cow."}
 6 {puts "It could be an ant."}
 8 {puts "It could be a spider."}
 default {puts "It could be anything."}
}

 switch -regexp aaab {

 ^a.*b$ -
 b {format 1}
 a* {format 2}
 default {format 3}
}

CS390 – UNIX Programming Spring 2009 Page 4

 Richard Johnson 4/11/09

 For loop example:

for {set i 0} {$i < 10} {incr i 1} {
 puts "In the for loop, and i == $i"
}

 While loop example:

set i 0
while {$i < 10} {
 puts "In the while loop, and i == $i"
 incr i 1
}

 Foreach loop example:

 foreach vowel {a e i o u} {

 puts "$vowel is a vowel"
}

 Procedures

Syntax: proc name arglist body

Example:

proc sum_proc {a b} {
 return [expr $a + $b]
}

proc magnitude {num} {
 if {$num > 0} {
 return $num
 }

 set num [expr $num * (-1)]
 return $num
}

set num1 12
set num2 14
set sum [sum_proc $num1 $num2]
puts "The sum is $sum"
puts "The magnitude of 3 is [magnitude 3] and of -2 is [magnitude -2]”

CS390 – UNIX Programming Spring 2009 Page 5

 Richard Johnson 4/11/09

Output:

The sum is 26
The magnitude of 3 is 3 and of -2 is 2

 Example (global and local variables):

proc dumb_proc {} {
 set myvar 4
 puts "The value of the local variable is $myvar"

 global myglobalvar
 puts "The value of the global variable is $myglobalvar"
}

set myglobalvar 79
dumb_proc

Output:

The value of the local variable is 4
The value of the global variable is 79

 Lists

Simple means to group items into a single entity, but use them in string context

Example:

set simple_list "John Joe Mary Susan"
puts [lindex $simple_list 0]
puts [lindex $simple_list 2]

Output:

John
Mary

 Example (compond lists, and llength):

set simple_list2 "Mike Sam Heather Jennifer"
set compound_list [list $simple_list $simple_list2]
puts $compound_list
puts [llength $compound_list]

CS390 – UNIX Programming Spring 2009 Page 6

 Richard Johnson 4/11/09

Output:

{John Joe Mary Susan} {Mike Sam Heather Jennifer}
2

Example: (linsert and lappend)

set mylist "Mercury Venus Mars"
puts $mylist
set mylist [linsert $mylist 2 Earth]
puts $mylist
lappend mylist Jupiter
puts $mylist

Output:

Mercury Venus Mars
 Mercury Venus Earth Mars

Mercury Venus Earth Mars Jupiter

 Arrays

Example:

set myarray(0) "Zero"
set myarray(1) "One"
set myarray(2) "Two"

for {set i 0} {$i < 3} {incr i 1} {
 puts $myarray($i)
}

Output:

Zero
One
Two

CS390 – UNIX Programming Spring 2009 Page 7

 Richard Johnson 4/11/09

Example (associative arrays):

set person_info(name) "Fred Smith"
set person_info(age) "25"
set person_info(occupation) "Plumber"

foreach thing {name age occupation} {
 puts "$thing == $person_info($thing)"
}

Output:

name == Fred Smith
age == 25
occupation == Plumber

 Example (associative arrays with unknown indicies):

foreach thing [array names person_info] {
 puts "$thing == $person_info($thing)"
}

Output:

occupation == Plumber
age == 25
name == Fred Smith

 Strings

Example:

 set str "This is a string"
puts "The string is: $str"
puts "The length of the string is: [string length $str]"
puts "The character at index 3 is: [string index $str 3]"
puts "The characters from index 4 through 8 are: [string range $str 4 8]"
puts "The index of the first occurrence of letter \"i\" is: [string first i $str]"

Output:

The string is: This is a string
The length of the string is: 16
The character at index 3 is: s
The characters from index 4 through 8 are: is a
The index of the first occurrence of letter "i" is: 2

CS390 – UNIX Programming Spring 2009 Page 8

 Richard Johnson 4/11/09

 Input and Output

Example:

puts -nonewline "Enter your name: "
set bytesread [gets stdin name]

puts "Your name is $name, and it is $bytesread bytes long"

Output: (note that user input is shown in italics)

Enter your name: Rich

Your name is Rich, and it is 4 bytes long

 Example:

 set f [open "/tmp/myfile" "w"]

puts $f "We live in Texas. It's already 110 degrees out here."
puts $f "456"

close $f

