
CS390 – UNIX Programming Spring 2009 Page 1

 Richard Johnson 4/18/09

Lecture #22 – Expect

 Expect Background

Tool for automating interactive applications (i.e. telnet, ftp, passwd, rlogin, etc)
“Official Web Site” - expect.nist.gov

Interpreter is either “expect” or “expecttk”.
“expect” contains Expect and TCL support
“expecttk” contains Expect, Tk, and TCL support

 Syntax:

Main keywords: spawn, send, expect

“spawn” creates a new process running the specified command and attaches to expect
“send” sends output to the new command
“expect” waits for output from the command

Example:

 send “Hello world”

 Output: Hello world

Example:

 expect “hi”
 send “Hello, there”

 Output: <You type “hi”>
 Hello, there

Note: default timeout for input is 60 seconds, but can be adjusted with “timeout” variable

Example:

 set timeout 120
 set timeout –1

Example (pattern-action pairs):

 expect “hi” { send “You said hi\n” } \
 “hello” {send “hello, yourself\n” } \
 “bye” {send “Goodbye, cruel world\n”}

CS390 – UNIX Programming Spring 2009 Page 2

 Richard Johnson 4/18/09

 Example: Changing root passwd on several machines

Sample session might look like:

localhost$ telnet remote0

Welcome to remote0.
login: myname
Password: <password>

Last Login: Yesterday.

remote0$ su
Password: <root’s password>

remote0# passwd root
New password: <new password>
Re-enter new password: <new password>
Password changed.

remote0# exit
remote0$ exit

Connection closed by foreign host.
localhost$ telnet remote1
[[etc…]]

Yields an expect script like :

foreach host “remote0 remote1 … remoteN” {
 spawn telnet $host
 expect “login: “; send “myname\r”;

expect “Password: “; send “mypassword\r”;
expect “$ “; send “su\r”

 expect "password: "; send "rootpassword\r"
 expect "# "; send "passwd root\r"

 expect {
 "password: " {
 send "rootnewpassword\r"; exp_continue
 }
 "# " {
 send "exit\r"
 }
 }
 expect "$ "; send "exit\r"

CS390 – UNIX Programming Spring 2009 Page 3

 Richard Johnson 4/18/09

 Example: Reprompt

Name: reprompt
Description: reprompt every so often until user enters something
Usage: reprompt timeout prompt
Author: Don Libes, NIST

foreach {timeout prompt} $argv {}

send_error $prompt
expect {
 timeout {
 send_error "\nwake up!!\a"
 send_error \n$prompt
 exp_continue
 }
 -re .+ {
 send_user $expect_out(buffer)
 }
}

 Example: Distributing files to remote machines

#!/usr/local/bin/expect –f

match_max 10000

set env(TERM) "dialup"
set user $env(LOGNAME)
stty –echo

send_user "Enter password for $user now: "
gets stdin password
send_user "\nEnter password for root on remotes now: "
gets stdin rootpw
stty echo

foreach machine $argv {
 spawn ftp $machine
 expect –re "Name .*: "
 send "$user\r"
 expect "word:"
 send "$password\r"
 expect "ftp> "; send "bin\r"
 expect "ftp> "; send "cd /tmp\r"
 expect "ftp> "; send "put localfile.tar\r"
 expect "ftp> "; send "quit\r"
 send_user "\r\nftp exited.\n"
 sleep 1; telnet $machine
 expect "ogin: "; send "$user\r"

CS390 – UNIX Programming Spring 2009 Page 4

 Richard Johnson 4/18/09

 expect "word: "; send "$password\r"
 expect –re "(\\$|>) "; send "su\r"
 expect "word: "; send "$rootpw\r"
 expect "# "; send "cd /tmp\r"
 expect "# "; send "tar xvf localfile.tar\r"
 expect "# "; send "exit\r"
 expect –re "\\$|>"; send "exit\r"
}

 Example checking innd daemon with a procedure

#!/usr/local/bin/expect –f

set timeout 10
proc smart_expect { look send } {
 expect {
 -exact $look {
 send $send
 }
 timeout {
 send_user "Timeout occurred\n"
 exit 1
 }
 }
}

spawn telnet newshost 119
match_max 10000
smart_expect "\r
200 " "group comp.risks\r"
smart_expect "\r
211 " "quit\r"
smart_expect "\r
205 " ""
smart_expect eof ""

 Example: Weather

exp_version -exit 5.0

if {$argc>0} {set code $argv} else {set code "WBC"}

proc timedout {} {
 send_user "Weather server timed out. Try again later when weather
server is not so busy.\n"
 exit 1
}

CS390 – UNIX Programming Spring 2009 Page 5

 Richard Johnson 4/18/09

set timeout 60

set env(TERM) vt100 ;# value doesn't matter, just has to be set

spawn telnet rainmaker.wunderground.com 3000
while {1} {
 expect timeout {
 send_user "failed to contact weather server\n"
 exit
 } "Press Return to continue*" {
 # this prompt used sometimes, eg, on opening connection
 send "\r"
 } "Press Return for menu*" {
 # this prompt used sometimes, eg, on opening connection
 send "\r"
 } "M to display main menu*" {
 # sometimes ask this if there is a weather watch in effect
 send "M\r"
 } "Change scrolling to screen*Selection:" {
 break
 } eof {
 send_user "failed to telnet to weather server\n"
 exit
 }
}
send "C\r"
expect timeout timedout "Selection:"
send "4\r"
expect timeout timedout "Selection:"
send "1\r"
expect timeout timedout "Selection:"
send "1\r"
expect timeout timedout "city code:"
send "$code\r"
expect $code ;# discard this

while {1} {
 expect timeout {
 timedout
 } "Press Return to continue*:*" {
 send "\r"
 } "Press Return to display statement, M for menu:*" {
 send "\r"
 } -re "(.*)CITY FORECAST MENU.*Selection:" {
 break
 }
}

send "X\r"
expect

