
CS390 – UNIX Programming Spring 2009 Page 1

 Richard Johnson 1/25/09

Lecture # 7 – Programming the Bourne Shell (Chapter 8)

 Reading user input

The read command is used to retrieve information from the keyboard.

Obtain one line of input, and place the results in a variable called “answer”:
$ read answer

Get one line of input, and place the first word in “first”, and remainder of line in “last”
$ read first last

 Arithmetic

There are no constructs in Bourne shell to support arithmetic calculations.

Integer math is done with the expr command.
Floating point math can be done with a variety of commands including bc.

Examples:

$ expr 1 + 4
5

$ expr 4 * 4
16

$ num=`expr $num + 1`

Examples:

 $ n=`echo “scale=3; 13 / 2” | bc`
 $ echo $n
 6.500

 If Command

if <cond>
then
 <Commands>
else
 <Commands>
fi

<cond> can be any command, a return value of zero is true, and nonzero is false

CS390 – UNIX Programming Spring 2009 Page 2

 Richard Johnson 1/25/09

else clause is optional
The else-if type construct is “elif”.

There is a program called test, which is helpful for standard comparisons.

For example: if test “$word1” = “$word2”; then
Can also use [] to call test (example: if [$# = 0]; then) NOTICE SPACES AROUND []
See man page for test, and man page for sh.

String tests:

 String1 = string2 string1 is equal to string2
 String1 != string2 string1 is not equal to string2
 String string is not null
 -z string length of string is zero
 -n string length of string is non-zero

Integer tests:

 int1 –eq int2 int1 is equal to int2
 int1 –ne int2 int1 is not equal to int2
 int1 –gt int2 int1 is greater than int2
 int1 –ge int2 int1 is greater or equal to int2
 int1 –lt int2 int1 is less than int2
 int1 –le int2 int1 is less than or equal to int2

Logical tests:

 Expr1 –a expr2 logical AND
 Expr1 –o expr2 logical OR
 ! expr logical NOT

File tests:

 -d filename directory existence
 -f filename file existence (not a directory)
 -r filename file exists and is readable
 -s filename file is nonzero size

Examples:

if [$# -ne 3]
then
 echo “usage: $0 <arg1> <arg2>”
 exit 1
fi

CS390 – UNIX Programming Spring 2009 Page 3

 Richard Johnson 1/25/09

 if [$age –fe 0 –a $age –lt 13]
 then
 echo “a child is a garden of verses”
 elif [$age –ge 13 –a $age –lt 20]
 then
 echo “rebel without a cause”
 else
 echo “other”
 fi

 if [-d $file]
 then
 echo “$file is a directory”
 fi

 Case

case string in
 Pattern1)
 Commands
 ;;
 *)
 Default commands
 ;;
esac

The first pattern to match determines the commands to be executed.
Can use simple regular expressions (*, ?, [], |)

Example:

 read letter
 case “$letter” in
 a|A) echo “You entered A”
 ;;
 b|B) echo “You entered B”
 ;;
 *) echo “You did not enter A, or B”
 ;;
 esac

CS390 – UNIX Programming Spring 2009 Page 4

 Richard Johnson 1/25/09

 For Command

for loop-index in arglist
do
 commands
done

Loop executes once for each value in arglist; begins with do, and stops with done

Example:

$ cat fruit
for fruit in apples oranges pears bananas
do
 echo $fruit
done

$ fruit
apples
oranges
pears
bananas

Another variation of the for loop:

for loop-index
do
 commands
done

This version runs once for each command line argument with loop-index being each arg.

Example with command substitution:

for file in `ls $dir`
do
 echo $file
done

 While Command

while <cond>
do
 commands
done

CS390 – UNIX Programming Spring 2009 Page 5

 Richard Johnson 1/25/09

$ cat count
number=0

while [“$number” –lt 10]
do
 echo “$number\c”

number=`expr $number + 1`
done
echo

 Until Command

Very similar to the while loop, but exits when <cond> is true instead of false

until <cond>
do
 commands
done

Example:

$ cat until.sh
secret=jenny
name=noname
echo Try and guess the secret
echo
until [“$name” = “$secretname”]
do
 echo “Your guess: \c”
 read name
done
echo Very good.

 Break and Continue

Break transfers control to the statement following “done”.
Continue transfers control to the “done” statement

 I/O redirection and subshells

Input can be piped or redirected to a loop from a file. Output can also be piped or
redirected to a file from a loop. The shell starts a subshell to handle the I/O redirection
and pipes.

Any variables defined within the loop will not be known to the rest of the script when the
loop terminates.

CS390 – UNIX Programming Spring 2009 Page 6

 Richard Johnson 1/25/09

 Example:

 cat $1 | while read line
 do
 [$count –eq 1] && echo “processing file $1…” > /dev/tty
 echo $count $line
 count=`expr $count + 1`
 done > temp.$$

 Example:

 while read line
 do
 echo $line
 done < testing > outfile

